Cerium(IV) Oxide Sulphate Hydrate, a New Refinement

By Ove Lindgren
Department of Inorganic Chemistry, Chalmers University of Technology and the University of Gothenburg, P.O. Box, S-402 20 Göteborg, Sweden

(Received 1 June 1976; accepted 18 June 1976)

Abstract

CeOSO}_{4} . \mathrm{H}_{2} \mathrm{O}\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, Z=4$, $a=11.987$ (2), $b=8.272$ (2), $c=4.331$ (1) $\AA, \quad V=$ $429 \cdot 1 \AA^{3}, \mu(\mathrm{Mo} K \alpha)=101 \cdot 0 \mathrm{~cm}^{-1}, \quad D_{x}=4 \cdot 182, \quad D_{m}=$ $4 \cdot 2 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was reported previously [Lundgren, Ark. Kem. (1953), 5, 59-75], and is built up by infinite strings of $\left(\mathrm{CeO}^{2+}\right)_{n}$ parallel to \mathbf{c}, crosslinked by SO_{4} groups. New intensities (2411 non-zero reflexions) have been refined by least squares to a final R of $0 \cdot 030$.

Introduction. Yellow prismatic crystals (elongation c) were obtained by hydrothermal hydrolysis of a $\mathrm{Ce}^{\mathrm{iv}}$ sulphate solution (Lundgren, 1953). A specimen, $0.24 \times 0.17 \times 0.47 \mathrm{~mm}$, was mounted on a Pailred single-crystal diffractometer with graphite-monochromatized Mo $K \alpha$ radiation. Intensities for two octants were collected with the ω-scan technique and a scan rate of $2.5^{\circ} \mathrm{min}^{-1}$. Systematically absent reflexions and those not fulfilling the criterion $I>3 \sigma(I)$ were discarded, leaving 2411 reflexions. The data were corrected for Lorentz, polarization and absorption effects. The crystal volume was $0.0102 \mathrm{~mm}^{3}$ and transmission factors varied from $0 \cdot 199$ to $0 \cdot 348$.
The parameters of Lundgren (1953) were used as a starting model. Scattering factors of the form $f_{o}+f^{\prime}$ $+i f^{\prime \prime}$ for Ce and S and $f_{o}+f^{\prime}$ for O (Cromer \& Waber, 1965) were used. The initial refinement was performed with a block-diagonal program designed at this Institute: positional parameters and isotropic temperature factors were refined. Moreover, a separate scale factor was used for each layer to allow for systematic errors in F_{o} as a function of the equi-inclination angle. R fell to 0.035 for the 2411 observed reflexions. In the final refinement, anisotropic tem-
perature factors and an extinction coefficient were refined with the Brookhaven full-matrix least-squares program LINUS. Weights were calculated according to $w=\left(38+\left|F_{o}\right|+0 \cdot 007\left|F_{o}\right|^{2}+0 \cdot 00054\left|F_{o}\right|^{3}\right)^{-1}$. The final R was 0.030 . A concluding difference map showed no significant peaks above the general background of $\sim 1.0 \mathrm{e}^{\AA}{ }^{-3}$. Atomic parameters are given in Table 1.*

Discussion. The previous investigation (Lundgren, 1953) was based on relatively sparse film data. The coordinates for all atoms except the O^{2-} ion were obtained from electron density projections. The positional parameters for O^{2-} were derived through geometrical considerations. No least-squares adjustment of the parameters was made. The aim of the present investigation was to obtain a more accurate determination of the coordination around Ce .

The structure is built up by infinite strings of empirical composition $\left(\mathrm{CeO}^{2+}\right)_{n}$ parallel to \mathbf{c}, crosslinked by SO_{4} groups. Fig. 1 is a projection down a showing the strings. Ce is in contact with three O^{2-} ions $[\mathrm{O}(6)]$ at $2 \cdot 188$ (3), $2 \cdot 269$ (3) and $2 \cdot 281$ (3) \AA. The $\mathrm{Ce}-\mathrm{Ce}$ distance is very short, $3 \cdot 570$ (1) \AA, even shorter than the $3 \cdot 63 \AA$ found in Ce metal (Lawson \& Tang, 1949). The string has also a very short $\mathrm{O}(6)-\mathrm{O}(6)$ distance, $2 \cdot 680$ (4), previously reported as $3.04 \AA$. Other distances show good agreement with the earlier work.

The SO_{4} group has all four O atoms bonded to Ce . It forms an almost regular tetrahedron, with mean S-O

* A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31956 (7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH11NZ, England.

Table 1. Positional and thermal parameters
The parameters have been multiplied by 10^{5} for Ce and S and by 10^{4} for O . The temperature factor is of the form:

	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ce	17885 (2)	13712 (2)	17002 (4)	632 (6)	710 (7)	647 (5)	90 (10)	-105 (10)	-91 (10)
S	47011 (8)	20358 (11)	34427 (23)	662 (30)	835 (33)	702 (26)	-351 (46)	-210 (49)	145 (50)
O(1)	4570 (3)	483 (4)	5117 (9)	111 (11)	103 (12)	126 (19)	-47 (18)	-48 (19)	62 (18)
O(2)	3652 (3)	2454 (5)	1830 (10)	67 (10)	188 (14)	141 (10)	4 (19)	-68 (18)	102 (19)
$\mathrm{O}(3)$	623 (3)	3152 (5)	8772 (8)	107 (12)	165 (14)	97 (12)	39 (19)	-94 (17)	0 (16)
O(4)	-16 (3)	1677 (4)	4358 (8)	111 (10)	129 (14)	116 (11)	18 (20)	$12(16)$	-25 (16)
O(5)	1885 (3)	4421 (4)	2991 (10)	123 (13)	160 (16)	187 (14)	17 (21)	-32 (21)	-64 (20)
O(6)	2267 (2)	892 (4)	6685 (8)	93 (10)	86 (11)	90 (8)	-23 (16)	29 (16)	-15 (19)

Fig. 1. The $\left(\mathrm{CeO}^{2+}\right)_{n}$ chains.
and O-O distances 1.476 and $2.409 \AA$ respectively (uncorrected for thermal motion).

A water molecule at $2 \cdot 587$ (4) \AA completes the eightfold coordination of Ce . The coordination figure is a distorted Archimedean antiprism. The mean $\mathrm{Ce}-\mathrm{O}$ distance is $2 \cdot 366 \AA$, longer than in $\mathrm{CeO}_{2}: 2 \cdot 343$ (Magnéli \& Kihlborg, 1951), in $\mathrm{Ce}_{2}(\mathrm{OH})_{2}\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}: 2 \cdot 328$ (Lindgren, 1976) and in $\mathrm{Ce}\left(\mathrm{SO}_{4}\right) .4 \mathrm{H}_{2} \mathrm{O}: 2.326 \AA$ (Lindgren, 1976). The water molecules are arranged in zigzag strings also running in the \mathbf{c} direction.

A stereoscopic packing diagram (Johnson, 1965) is shown in Fig. 2. Distances and angles for the present and previous investigations are given in Table 2.

The author thanks Professor G. Lundgren for suggesting the problem and for stimulating discussions, and Dr J. Wood for revising the English text. This investigation was supported by the Swedish Natural Science Research Council (Contract No. 2318).

Table 2. Interatomic distances (\AA) and angles (${ }^{\circ}$)
Symmetry code: (i) $\frac{1}{2}-x,-y, z-\frac{1}{2}$; (ii) x, y, z; (iii) $x, y, z-1$.

		This investigation	Lundgren (1953)
$\mathrm{Ce}-\mathrm{O}(1)$		$2 \cdot 340$ (3)	$2 \cdot 39$
$\mathrm{Ce}-\mathrm{O}(2)$		$2 \cdot 408$ (3)	$2 \cdot 45$
$\mathrm{Ce}-\mathrm{O}(3)$		2.394 (4)	$2 \cdot 38$
$\mathrm{Ce}-\mathrm{O}(4)$		2.463 (4)	$2 \cdot 41$
$\mathrm{Ce}-\mathrm{O}(5)$		2.587 (4)	$2 \cdot 66$
$\mathrm{Ce}-\mathrm{O}\left(6^{\text {i }}\right.$)		2.188 (3)	$2 \cdot 34$
$\mathrm{Ce}-\mathrm{O}\left(6^{(1)}\right)$		2.269 (3)	$2 \cdot 34$
$\mathrm{Ce}-\mathrm{O}\left(6^{\text {iii }}\right.$)		2.281 (3)	$2 \cdot 34$
$\mathrm{S}-\mathrm{O}(1)$		1.484 (4)	$1 \cdot 42$
$\mathrm{S}-\mathrm{O}(2)$		1.479 (4)	$1 \cdot 47$
$\mathrm{S}-\mathrm{O}(3)$		1.471 (4)	$1 \cdot 46$
$\mathrm{S}-\mathrm{O}$ (4)		1.468 (4)	$1 \cdot 53$
$\mathrm{O}(1)-\mathrm{O}(2)$		2.428 (5)	$2 \cdot 40$
$\mathrm{O}(1)-\mathrm{O}(3)$		$2 \cdot 388$ (5)	$2 \cdot 37$
$\mathrm{O}(1)-\mathrm{O}(4)$		$2 \cdot 412$ (5)	$2 \cdot 38$
$\mathrm{O}(2)-\mathrm{O}(3)$		2.428 (5)	2.36
$\mathrm{O}(2)-\mathrm{O}(4)$		2.407 (5)	2.45
$\mathrm{O}(3)-\mathrm{O}(4)$		$2 \cdot 393$ (5)	$2 \cdot 42$
$\mathrm{O}(5)-\mathrm{O}(2)$		2.719 (5)	$2 \cdot 78$
$\mathrm{O}(5)-\mathrm{O}(3)$		2.594 (5)	$2 \cdot 63$
$\mathrm{O}(5)-\mathrm{O}(5)$	(2×)	2.789 (5)	2.73
$\mathrm{O}(6)-\mathrm{O}(6)$	($2 \times$)	$2 \cdot 680$ (4)	3.04
$\mathrm{Ce}-\mathrm{Ce}$	(2×)	3.570 (1)	$3 \cdot 58$
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(2)$		$110 \cdot 1$ (2)	
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(3)$		$107 \cdot 9$ (2)	
$\mathrm{O}(1)-\mathrm{S}-\mathrm{O}(4)$		$109 \cdot 6$ (2)	
$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(3)$		$110 \cdot 8$ (2)	
$\mathrm{O}(2)-\mathrm{S}-\mathrm{O}(4)$		109.5 (2)	
$\mathrm{O}(3)-\mathrm{S}-\mathrm{O}(4)$		$109 \cdot 0$ (2)	

References

Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Johnson, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
Lawson, A. W. \& Tang, T.-Y. (1949). Phys. Rev. 76, 301. Lindgren, O. (1976). Acta Chem. Scand. To be published. Lundgren, G. (1953). Ark. Kem. 5, 59-75.
Magnéli, A. \& Kihlborg, L. (1951). Acta Chem. Scand. 5, 578.

Fig. 2. Stereoscopic drawing of the unit-cell contents viewed approximately along \mathbf{c}.

